HS5L

Compact design with 2- and 4-contacts

- See website for details on approvals and standards.
- KOHSA (S mark) approved only on some models.

\rightarrow Additional Marking to indicate Locking Monitoring

This new international marking for lock monitoring is described in clause 9.2.1 of IS014119 and is used to satisfy the requirements shown below.
5.7.1 General requirements
5.7.2.2 Locking monitoring

The lock monitor circuit (contacts) with this marking can monitor both the status of protective door and locking function. (locking monitor contact [circuits] opens when the protective door is closed and locked)
Both spring lock and solenoid lock models of HS5L have marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.

Spring clamp terminals

Spring clamp terminals offer excellent vibration resistance, preventing wires from loosening. No need for additional tightening.

Two-conduit Model

Cable can be connected to the right, left, or bottom (for straight cable orientation) of the terminal cover. Possible to use long marking tubes with the wiring cables.

Straight cable orientation

Energy saving!

Solenoid energy consumption: 200mA Reduced by 25% from conventional HS5E series.

Head Removal Detection Circuitry

Head removal detection circuitry is employed in the HS5L. With this innovative function, the monitor circuit (41-42) turns off when the head is removed from the switch, such as when removing the head to change the head direction (applicable with the HS5L spring lock models). For example, for circuit codes: VB, VD and DD, which have two or more lock monitor circuits installed, removing the head results in disparity (41-42: 0FF, $51-52: 0 \mathrm{~N}$). This disparity is detected by the head removal detection function.

- HS5L-VD44M-G (Lock monitor circuit)

Note: Head removal detection function is not a direct opening action mechanism.

Spring lock and Solenoid lock models available

Spring Lock

- Automatically locks the actuator without power applied to the solenoid.
- After the machine stops, unlocking is completed by the solenoid, providing high safety features.
- Manual unlocking is possible in the event of power failure or maintenance using a manual unlocking key.
- Head removal detection circuitry (spring lock models only).

Solenoid Lock

- The actuator is locked when energized.
- The actuator is unlocked when de-energized.
- Flexible locking function can be achieved, for an application where locking is not required and sudden stopping of a machine must be prevented.

HS5L Interlock Switches with Solenoid (2-Contact)

Two-contact solenoid interlock switches ideal for use on applications such as food machines and injection molding machines.

APEM
Switches \& Pilot Lights

Control Boxes
Emergency Stop Switches

Enabling Switches

Safety Products
Explosion Proof

Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination
Controllers

Interlock
Switches
Non-contact Interlock Switches

Safety Laser Scanners
Safety Light Curtains

Safety Modules

HS6B

Actuators for HS1/HS5/HS6
Actuators/ Padlock Hasp

Specifications

Applicable Standards	EN IS014119 GS-ET-19 (TÜV approval) EN60947-5-1 (TÜV approval) UL508 (UL listed) CSA C22.2 No. 14 (c-UL listed) GB/T14048.5 (CCC approval) KS C IEC60947-5-1/S1-G-1/S2-E-4 (KOSHA approval) (*1)
	IEC60204-1/EN60204-1 (applicable standards for use)
Type and Coded level	Type 2 low level coded interlocking device (IS014119)
Operating Temperature	-25 to $+55^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	20 to 95\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	3
Impulse Withstand Voltage	2.5 kV (between LED, solenoid and grounding: 0.5 kV)
Insulation Resistance (500V DC megger)	Between live and dead metal parts: $100 \mathrm{M} \Omega \mathrm{min}$. Between terminals of different poles: $100 \mathrm{M} \Omega$ min.
Electric Shock Protection	Class II (IEC61140)
Degree of Protection	IP67 (IEC60529) Type 4X Indoor Use Only
Shock Resistance	Operating extremes: $100 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$, Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$ (100G)
Vibration Resistance	Operating extremes: 10 to 55 Hz , amplitude 0.35 min . Damage limits: 30 Hz , amplitude 1.5 mm min.
Actuator Operating Speed	0.05 to $1.0 \mathrm{~m} / \mathrm{s}$
Direct Opening Travel	11.0mm min. (Actuator: HS9Z-A51/A5P) 12.0mm min. (Actuator: HS9Z-A52/A51A/A52A/A53/ A55/A55S/SH5/EH5L) 24.5mm min. (Actuator: HS9Z-BA5)
Direct Opening Force	120N min.
Actuator Retention Force (*2)	Fzh $=1400 \mathrm{~N}$ min. (GS-ET-19) However, Fzh=500N min. when HS9Z-A55 is used
Operating Frequency	900 operations per hour
Rear Unlocking Button Mechanical Durability	3,000 times min. (HS5L-DCL)
Mechanical Durability	2,000,000 times min. (Operation frequency 900 times/hour, actuator insert/remove, solenoid operation) 100,000 times min. when using HS9Z-SH5/ EH5L/DH5 (actuator insert/remove)
Electrical Durability	100,000 times min. (Operating Frequency: 900 operations per hour) $2,000,000$ times min. $(24 \mathrm{~V}$ AC/DC, 100 mA$)$
Conditional Short-circuit Current	50 A (250V) (Use 250V/10A fast-blow fuse for short- circuit protection.)
Cable	$0.3 \mathrm{~mm}^{2} \mathrm{~min}$. and $1.5 \mathrm{~mm}^{2}$ max. or AWG22 min. to AWG16 max. strand wire or single wire
Weight (Approx.)	300 g

*1) Not applicable for all models. Visit IDEC's website for details.
*2) See E-044 regarding actuator retention force.

Ratings
Contact Ratings

Rated Insulation Voltage (Ui)			250 V(between LED, solenoid and grounding: 30V)		
Rated Current (Ith)			2.5A		
Rated Voltage (Ue)			30V	125 V	250V
	AC	Resistive Load (AC-12)	-	2.5A	1.5A
		Inductive Load (AC-15)	-	1.5A	0.75A
	DC	Resistive Load (DC-12)	2.5 A	1.1A	0.55A
		Inductive Load (DC-13)	2.3A	0.55A	0.27A

- Minimum applicable load (reference): 3V AC/DC, 5mA
(Applicable range may vary with operating conditions and load types.)
* UL, c-UL rating: Pilot Duty AC 0.75A/250V,

Pilot Duty DC 1.0A/30V
TÜV rating: $\quad \mathrm{AC}-150.75 \mathrm{~A} / 250 \mathrm{~V}, \mathrm{DC}-13 \quad 2.3 \mathrm{~A} / 30 \mathrm{~V}$
CCC rating: \quad AC-15 0.75A/250V, DC-13 2.3A/30V
KOSHA rating: AC-15 0.75A/250V, DC-13 1.0A/30V (*1)

Solenoid

Locking Mechanism	Spring Lock
Rated Voltage	100% duty cycle 24 V DC
Rated Current	200 mA (initial value)
Coil Resistance	120Ω (at $20^{\circ} \mathrm{C}$)
Pickup Voltage	Rated voltage $\times 85 \%$ max. (at $20^{\circ} \mathrm{C}$)
Dropout Voltage	Rated voltage $\times 10 \%$ min. (at $20^{\circ} \mathrm{C}$)
Maximum Continuous Applicable Voltage	Rated voltage $\times 110 \%$
Maximum Continuous Applicable Time	Continuous
Insulation Class	Class F

Indicator

Rated Voltage	24 V DC
Rated Current	10 mA
Light Source	LED
Illumination Color	G (Green)

HS5L Interlock Switches with Solenoid (2-Contact)
2-Contact
Package Quantity: 1

Circuit Code	Contact Configuration	Gland Port Size	Spring lock	Solenoid
			Part No.	
XD	Door Monitor (Actuator inserted) $\left.\begin{array}{l}\text { Lock Monitor } \\ \text { Spring lock } \rightarrow \text { Solenid OFF } \\ \text { Solenoid lock } \rightarrow \text { Solenoid ON }\end{array}\right)$	M20	HS5L-XD44M-GHS5L-XD44LM-G (Rear Unlocking Button Model)	HS5L-XD7Y4M-G
XF	Door Monitor Circuit: 2NC Monitor Circuit: $\Theta 11$ Monitor Circuit: $\Theta 21+22$		-	HS5L-XF7Y4M-G
XG	Door Monitor Circuit: 1NC,1NO Monitor Circuit: Monitor Circuit:		-	HS5L-XG7Y4M-G
XH	Lock Monitor Circuit: 2NC		HS5L-XH44M-G	HS5L-XH7Y4M-G
XH	Monitor Circuit: 41 42 $\boxed{ } 1$ Monitor Circuit: 51 52 \checkmark (Note)		HS5L-XH44LM-G (Rear Unlocking Button Model)	
XJ	Lock Monitor Circuit: 1NC, 1NO Monitor Circuit: 41 42 Monitor Circuit: 53 54		HS5L-XJ44M-G	HS5L-XJ7Y4M-G

- The contact configuration shows the status when the actuator is inserted and the switch is locked.

Note: Both spring lock and solenoid lock models of HS5L have

- Actuators are not supplied with the interlock switch and must be ordered separately.
- Contact us for details of two-conduit model. (Part No: HS5L- $\square \square \square \square$ SM-G) marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.

Circuit Diagrams and Operating Characteristics

Spring Lock

Interlock Switch Status				Status 1	Status 2	Status 3	Status 4	When unlocking manually	
				Door Closed Machine ready to operate Solenoid de-energized	Door Closed Machine cannot be operated Solenoid energized	Door open Machine cannot be operated Solenoid energized	Door open Machine cannot be operated Solenoid de-energized	Door Closed Machine cannot be operated Solenoid de-energized	
Door Status									
Circuit Example: HS5L-XD4									
Door				Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)	
			Monitor Circuit (door closed) 11-12						
	Monito Cricuit: ©11 Monitor Circuit:	41	Monitor Circuit (locked) $41-42$						
	HS5L-XH4 Monitor Circuit:	$41 \quad 42$ \square	Monitor Circuit (locked) $41-42$						
		51	Monitor Circuit (locked) $51-52$						
Solenoid Power A1-A2 (common to all types)				OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)	

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status door monitor) or protective door lock/unlock status (lock monitor).
${ }^{* 1}$) Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.
*2) When an operator is confined within a dangerous zone, the actuator can be unlocked manually by pressing the rear unlocking button (rear unlocking button model).

HS5L Interlock Switches with Solenoid (2-Contact)

Circuit Diagrams and Operating Characteristics

Solenoid Lock

Interlock Switch Status				Status 1	Status 2	Status 3	Status 4	Unlocking using Manual Unlock Key
				Door Closed Machine ready to operate Solenoid energized	Door Closed Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid energized	Door Closed Machine cannot be operated Solenoid de-energized \rightarrow energized
Door Status								
Circuit Example: HS5L-XD7Y								
Door				Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
	$\begin{aligned} & \begin{array}{l} \text { HS5L-XD7Y } \\ \text { Door Monitor } \\ \text { (Actuator inserted) } \end{array} \\ & \\ & \\ & \text { Monitor C Circuit: } \Theta 11 \end{aligned}$		Monitor Circuit (door closed) 11-12					
			Monitor Circuit (locked) 41-42					
	HS5L-XF7Y (*) Monitor Circuit: $\Theta 11$ Monitor Circuit: $\Theta 21$		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \end{array} \\ \hline \end{array}$					
			$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ \hline \end{array}$					
			$\begin{array}{\|c} \hline \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \end{array}$					
			$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{array} \\ \hline \end{array}$					
	HS5L-XH7Y Monitor Circuit: Monitor Circuit:	41	Monitor Circuit (locked) $41-42$					
			$\begin{array}{\|c\|} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \\ \hline \end{array}$					
Solenoid Power A1-A2 (all models)				OFF (energized)	OFF (de-energized)	OFF (de-energized)	ON (energized) (*2)	$\begin{array}{\|l} \hline \text { OFF (de-energized) }{ }^{\left({ }^{(11)}\left({ }^{* 2}\right)\right.} \\ \text { ON (energized) } \end{array}$

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status (door monitor) or protective door lock/unlock status (lock monitor).
*1) Do not unlock manually while the solenoid is energized.
*2) Do not energize the solenoid for a long period of time while the door is open or while the door is unlocked manually.
${ }^{* 3}$) Circuit codes XF and XG do not have signals to notify whether the switch is locked or unlocked. A different method should be used to check the lock status.
*) Both spring lock and solenoid lock models of HS5L have marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.

Operation Characteristics (Reference)

Door Monitor Circuit (door open, NO) Door Monitor Circuit (door closed, NC Lock Monitor Circuit (unlocked, NO) Lock Monitor Circuit (locked, NC)

- The operation characteristics shown in the chart above are for HS9Z-A51. For other actuators, add 1.3 mm .
- See E-051 for HS9Z-BA5.
- The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

HS5L Interlock Switch with Solenoid (4-Contact)

Four-contact solenoid interlock switches ideal for use on limited mounting spaces such as small doors.

Specifications

Applicable Standards	EN IS014119 GS-ET-19 (TÜV approval) EN60947-5-1 (TÜV approval) UL508 (UL listed) CSA C22.2 No. 14 (c-UL listed) GB/T14048.5 (CCC approval) KS C IEC60947-5-1/S1-G-1/S2-E-4 (KOSHA approval) (*1)
	IEC60204-1/EN60204-1 (Applicable standards for use)
Type and Coded Level	Type 2 low level coded interlocking device (EN/IS014119)
Operating Temperature	-25 to $+55^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	20 to 95\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	3
Impulse Withstand Voltage	2.5 kV (between LED, solenoid and grounding: 0.5 kV)
Insulation Resistance (500V DC megger)	Between live and dead metal parts: $100 \mathrm{M} \Omega$ min. Between terminals of different poles: $100 \mathrm{M} \Omega$ min.
Electric Shock Protection	Class II (IEC61140)
Degree of Protection	IP67 (IEC60529) Type 4X Indoor Use Only
Shock Resistance	Operating extremes: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G) Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$ (100G)
Vibration Resistance	Operating extremes: 10 to 55 Hz , amplitude 0.35 min . Damage limits: 30 Hz , amplitude 1.5 mm min.
Actuator Operating Speed	0.05 to $1.0 \mathrm{~m} / \mathrm{s}$
Direct Opening Travel	11.0 mm min. (Actuator: HS9Z-A51/A5P) 12.0 mm min. (Actuator: HS9Z-A52/A51A/A52A/A53/ A55/A55S/SH5/EH5L) 24.5 mm min. (Actuator: HS9Z-BA5)
Direct Opening Force	120 N min.
Actuator Retention Force (*2)	Fzh $=1400 \mathrm{~N}$ min. (GS-ET-19) However, Fzh=500N min. when HS9Z-A55 is used
Operating Frequency	900 operations per hour
Rear Unlocking Button Mechanical Durability	3,000 times min. (HS5L-प[L)
Mechanical Durability	2,000,000 times min. (Operation frequency 900 times/hour, actuator insert/remove, solenoid operation) 100,000 times min. when HS9Z-SH5/EH5L/DH5 (actuator insert/remove)
Electrical Durability	$\begin{array}{\|ll\|} \hline 100,000 \text { times min. } & \text { (Operating Frequency: } \\ & 900 \text { operations per hour) } \\ 2,000,000 \text { times min. } & (24 \mathrm{~V} \text { AC/DC, } 100 \mathrm{~mA}) \end{array}$
Conditional Short-circuit Current	50 A (250V) (Use 250V/10A fast-blow fuse for short- circuit protection.)
Cable	$0.3 \mathrm{~mm}^{2} \mathrm{~min}$. and $1.5 \mathrm{~mm}^{2}$ max. or AWG22 min. to AWG16 max. strand wire or single wire
Weight (Approx.)	300 g

Ratings
Contact Ratings

Rated Insulation Voltage (Ui)			$250 \mathrm{~V}$ (between LED, solenoid and grounding: 30V)		
Rated Current (Ith)			2.5A		
Rated Voltage (Ue)			30 V	125 V	250 V
	AC	Resistive Load (AC-12)	-	2.5A	1.5A
		Inductive Load (AC-15)	-	1.5A	0.75A
	DC	Resistive Load (DC-12)	2.5 A	1.1A	0.55A
		Inductive Load (DC-13)	2.3 A	0.55A	0.27A

Switches \& Pilot Lights

Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof

Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator
Interfaces
Sensors
AUTO-ID

- Minimum applicable load (reference): 3V AC/DC, 5mA
(Applicable range may vary with operating conditions and load types.)
* UL, c-UL rating: Pilot Duty AC 0.75A/250V,

Pilot Duty DC 1.0A/30V
TÜV rating: AC-15 0.75A/250V, DC-13 2.3A/30V
CCC rating: AC-15 $0.75 \mathrm{~A} / 250 \mathrm{~V}, \mathrm{DC}-132.3 \mathrm{~A} / 30 \mathrm{~V}$
KOSHA rating: AC-15 $0.75 \mathrm{~A} / 250 \mathrm{~V}, \mathrm{DC}-131.0 \mathrm{~A} / 30 \mathrm{~V}$ (*1)

Solenoid

Locking Mechanism	Spring Lock \quad Solenoid Lock
Rated VoItage	100% duty cycle 24 V DC
Rated Current	200 mA (initial value)
Coil Resistance	120Ω (at $20^{\circ} \mathrm{C}$)
Pickup Voltage	Rated voltage $\times 85 \%$ max. (at $20^{\circ} \mathrm{C}$)
Dropout Voltage	Rated voltage $\times 10 \%$ min. (at $20^{\circ} \mathrm{C}$)
Maximum Continuous Applicable Voltage	Rated voltage $\times 110 \%$
Maximum Continuous Applicable Time	Continuous
Insulation Class	Class F

Indicator	Rated Voltage 24V DC Rated Current 10 mA Light Source LED IIlumination Color $\mathrm{G}($ Green $)$

[^0]
HS5L Interlock Switch with Solenoid (4-Contact)

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Actuators are not supplied with the interlock switch and must be ordered separately.
- For safety circuit input, connect to the monitor circuit with marking.
- Contact us for details of two-conduit model. (Part No: HS5L-■ด口ᄆSM-G)

Note: Both spring lock and solenoid lock models of HS5L have marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.

Circuit Code	Contact Configuration	Gland Port Size	Spring lock

VA	Door Monitor Circuit: 1NC,1NO Lock Monitor Circuit: 1NC, 1N0	M20	HS5L-VA44LM-G
	Monitor Circuit: Θ 11 12 Monitor Circuit: Monitor Circuit: 23 24 53		
	Door Monitor Circuit: 1NC, 1NO Lock Monitor Circuit: 2NC		HS5L-VB44LM-G
VB	Monitor Circuit: $11+12$ 23 41-:42 Monitor Circuit: $51+52$凹		HS5L-VB44LSM-G (two-conduit model)
VC			HS5L-VC44LM-G
	Door Monitor Circuit: 2NC Lock Monitor Circuit: 2NC		HS5L-VD44LM-G
	Monitor Circuit Monitor Circuit: $51+52$		HS5L-VD44LSM-G (two-conduit model)
VF			HS5L-VF44LM-G
VJ			HS5L-VJ44LM-G

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Actuators are not supplied with the interlock switch and must be ordered separately.

4-Contact/Dual Safety Circuit (Spring Lock)

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Actuators are not supplied with the interlock switch and must be ordered separately.

4-Contact/Dual Safety Circuit/Rear Unlocking Button (Spring Lock)

Circuit Code	Contact Configuration			Gland Port Size	Spring lock	
				Part No.		
DD	$\begin{array}{r} \text { Main Circuit: } 1 \mathrm{NC}+1 \mathrm{NC} \\ 1 \mathrm{NC}+1 \mathrm{NC} \end{array}$	Door Monitor (Actuator inserted) 0	Lock Monitor (Solenoid OFF) (+) $\bigcirc(-)$		M20	HS5L-DD44LM-G
		$\text { it: } \Theta \frac{11+12}{21+12}$	$\begin{array}{l:l\|l} 41 & 42 \\ \hline 51 & 52 & \boxed{ } l \\ \hline \end{array}$	$\begin{aligned} & \text { HS5L-DD44LSM-G } \\ & \text { (two-conduit model) } \end{aligned}$		

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Actuators are not supplied with the interlock switch and must be ordered separately.

APEM
 Pilot Lights
Control Boxes
Emergency Stop Swithes
Enabling Switches
Safety Products
Explosion Proot
Terminal Blocks
Relays \& Sockets
Circuit Protectors
Power Supplies
LED Illumination
Controllers
Operator Interfaces
Sensors
AUT0-ID

Interlock
Switches
Non-contac
nterlock Switches
Safety Lase Scanne
Safety Lig Curtaii
Safety Mod

4-Contact/Rear Unlocking Button (Spring Lock)

Circuit Diagrams and Operating Characteristics

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status (door monitor) or protective door lock/unlock status (lock monitor).
${ }^{* 1}$) Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.
*2) When an operator is confined within a dangerous zone, the actuator can be unlocked manually by pressing the rear unlocking button (rear unlocking button model)

Circuit Diagrams and Operating Characteristics

4-Contact/Rear Unlocking Button (Spring Lock)

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status (door monitor) or protective door lock/unlock status (lock monitor).
${ }^{*}$) Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.
*2) When an operator is confined within a dangerous zone, the actuator can be unlocked manually by pressing the rear unlocking button (rear unlocking button model).

HS5L Interlock Switch with Solenoid (4-Contact)

Circuit Diagrams and Operating Characteristics

4-Contact (Solenoid Lock)

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Unlocking using Manual Unlock Key
			Door Closed Machine ready to operate Solenoid energized	Door Closed Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid energized	Door Closed Machine cannot be operated Solenoid de-energized \rightarrow energized
Door Status							
Circuit Example: HS5L-VA7Y							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		$\begin{aligned} & \begin{array}{l} \text { Monitor Circuit } \\ \text { (door Closed) } \\ 11-12 \end{array} \\ & \hline \end{aligned}$					
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{array} \\ \hline \end{array}$					
		$\begin{array}{\|c} \hline \text { Monitor circuit } \\ \text { (locked) } \\ 41-42 \\ \hline \end{array}$					
		$\begin{array}{\|c} \substack{\text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54} \\ \hline \end{array}$					
		$\underset{\substack{\text { Monitor Circuit } \\ \text { (door closed) }}}{\text { L1 }}$ $11-12$					
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{gathered}$					
		$\begin{array}{\|c} \hline \begin{array}{l} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{array} \\ \hline \end{array}$					
	HS5L-VC7Y	$\begin{array}{\|c} \hline \text { Monitor Circuit } \\ \text { (door Clised) } \\ 11-12 \\ \hline \end{array}$					
		$\begin{array}{\|c} \hline \text { Monitior Circuit } \\ \text { (door Closedi) } \\ 21-22 \\ \hline \end{array}$					
		$\substack{\text { Monitor Circuit } \\ \text { (locked) } \\ 41-42}$					
		$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \\ \hline \end{gathered}$					
		$\begin{array}{\|c} \hline \text { Monitor Circuit } \\ \text { (door Closed) } \\ 11-12 \end{array}$					
		$\begin{aligned} & \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ & \hline \end{aligned}$					
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{array} \\ \hline \end{array}$					
		$\begin{gathered} \text { Monitor Circcuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$					
	HS5L-VF7Y Monitor Circuit $\oplus 21+22$ Monitor Circuit: $\Theta 31+32$	$\begin{gathered} \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \end{gathered}$					
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ \hline \end{array}$					
		$\begin{gathered} \text { Monitor Circcuit } \\ \left(\begin{array}{c} \text { (locked) } \\ 31-32 \end{array}\right. \\ \hline \end{gathered}$					
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{array} \\ \hline \end{array}$					
Solenoid Power A1-A2 (all models)			ON (energized)	OFF (de-energized)	OFF (de-energized)	ON (energized) (*2)	$\begin{array}{\|l\|l} \hline \text { OFF (de-energized) } \xrightarrow{\left({ }^{(1)}\right)\left({ }^{(2)}\right.} \\ \text { ON (energized) } \end{array}$

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status (door monitor) or protective door lock/unlock status (lock monitor).
*1) Do not attempt manual unlocking when the solenoid is energized.
${ }^{* 2}$) Do not energize the solenoid for a long time while the door is open or when the door is unlocked manually.
*3) Both spring lock and solenoid lock models of HS5L have marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.

Operating Characteristics (Reference)

- The operation characteristics shown in the chart above are for HS9Z-A51. For other actuators, add 1.3 mm
- See E-051 for HS9Z-BA5.
- The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Circuit Diagrams and Operating Characteristics

4-Contact (Solenoid Lock)

Interlock Switch Status					Status 1	Status 2	Status 3	Status 4	Unlocking using Manual Unlock Key
					Door Closed Machine ready to operate Solenoid energized	Door Closed Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid de-energized	Door open Machine cannot be operated Solenoid energized	Door Closed Machine cannot be operated Solenoid de-energized \rightarrow energized
Door Status									$\begin{aligned} & \text { nen } \\ & \text { When unlocking } \\ & \text { manually } \end{aligned}$
Circuit Example: HS5L-VA7Y									
Door					Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
				$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \end{array} \\ \hline \end{array}$					
				$\begin{array}{\|c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \\ \hline \end{array}$					
				$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 33-34 \end{gathered}$					
				$\begin{gathered} \text { Monitor Circcuit } \\ \text { (locked) } \\ 41-42 \end{gathered}$					
	HS5L-VH7Y Monitor Circuit: $\Theta 11+12$ Monitor Circuit: Monito Circuit:			$\underset{\substack{\text { Monitor Circuit } \\ \text { (door closed) } \\ \text { (11) }}}{ }$ 11-12					
		$12 \begin{array}{ll} 12 \\ 5 \end{array}$		$\begin{gathered} \text { Monitor Circcuit } \\ (\text { locked }) \\ 41-42 \\ \hline \end{gathered}$					
		61	$61+62 \square(3)$	$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{gathered}$					
				$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlock) } \\ 63-64 \end{gathered}$					
				$\begin{gathered} \substack{\text { Monitor Circuit } \\ \text { (door open) } \\ 13-14} \\ \hline \end{gathered}$					
				Monitor Circuit (locked) $41-42$					
				$\begin{gathered} \text { Monitor Circcuit } \\ (\text { locked) } \\ 51-52 \end{gathered}$					
				$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 63-64 \end{gathered}$					
				$\begin{gathered} \text { Monitor Circuit } \\ \text { (door open) } \\ 13-14 \end{gathered}$					
				$\begin{aligned} & \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{array} \\ & \hline \end{aligned}$					
				$\begin{aligned} & \hline \text { Monitor Circuit } \\ & \text { (locked) } \\ & 51-52 \\ & \hline \end{aligned}$					
				$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 61-62 \end{gathered}$					
				$\begin{gathered} \text { Monitor Circuit } \\ \text { (door openn) } \\ 13-14 \end{gathered}$					
				$\begin{gathered} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \\ \hline \end{gathered}$					
				$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{array} \\ \hline \end{array}$					
				$\begin{gathered} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 63-64 \\ \hline \end{gathered}$					
Solenoid Power A1-A2 (all models)					ON (energized)	OFF (de-energized)	OFF (de-energized)	ON (energized) (*2)	$\begin{array}{\|l\|l} \hline \text { OFF (de-energized) } \xrightarrow{\left({ }^{*}\right)\left({ }^{* 2)}\right.} \\ \text { ON (energized) } \end{array}$

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status (door monitor) or protective door lock/unlock status (lock monitor).
*1) Do not attempt manual unlocking when the solenoid is energized.
*2) Do not energize the solenoid for a long time while the door is open or when the door is unlocked manually.
*3) Both spring lock and solenoid lock models of HS5L have marking for lock monitoring. Note that solenoid lock model can be used in applications where lock for safety purpose is found unnecessary after a risk assessment, e.g. locking is needed for purposes such as in production process.
Operating Characteristics (Reference)

- The operation characteristics shown in the chart above are for HS9Z-A51. For other actuators, add 1.3 mm .
- See E-051 for HS9Z-BA5.
- The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

HS5L Interlock Switch with Solenoid (4-Contact)

Circuit Diagrams and Operating Characteristics
 4-Contact/Dual Safety Circuit, 4-Contact/Dual Safety Circuit/Rear Unlocking Button (Spring Lock)

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Unlocking using Manual Unlock Key	
			Door Closed Machine ready to operate Solenoid de-energized	Door Closed Machine cannot be operated Solenoid energized	Door open Machine cannot be operated Solenoid energized	Door open Machine cannot be operated Solenoid de-energized	Door Closed Machine ca operated Solenoid de	be ergized
Door Status								
Circuit Example: HS5L-DD4								
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)	
		Main Circuit 11-42						
		Main Circuit 21-52						
-	HS5L-DD44L	Main Circuit 11-42						
	Main Circuit: Θ 21	Main Circuit 21-52						
Solenoid Power A1-A2 (all model)			OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized) 1	

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door.
- For safety circuit input, connect to the monitor circuit.
*1) Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure. *2) When an operator is confined within a dangerous zone, the actuator can be unlocked manually by pressing the rear unlocking button. (rear unlocking button model)
Operating Characteristics (Reference)
Safety Laser

Safety Light Curtains

Safety Modules

- The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuators, add 1.3 mm
- See E-051 for HS9Z-BA5.
- The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Actuators for HS5 Series Interlock Switches

Actuator

Description	Part No.	Package Quantity	Remarks
Straight	HS9Z-A51	1	Actuator retention force is Fzh=1400N.
Straight with rubber bushings	HS92-A51A		
Right-angle	HS9Z-A52		
Right-angle with tubber bushings	HS9Z-A52A		
Angle adjustable (vertical)	HS9Z-A53		
Angle adjustable (vertical/horizontal) with plate	HS9Z-A55S		
Angle adjustable (vertical/horizontal)	HS9Z-A55		Actuator retention force is $\mathrm{Fz}=500 \mathrm{~N}$. When a retention force of 500 N or more is required, use HS9Z-A55S.

- See E-064 for details on actuators.

Accessories

Description	Part No.	Package Quantity	Remarks
Sliding actuator (*1)	HS9Z-SH5	1	Actuator retention force is Fzh=1400N.
Door handle Handle unit for right-hand door	HS9Z-DH5RH		Choose according to the required opening side.
actuator Handle unit for left-hand door	HS92-DH5LH		Choose according to the required opening side.
(*1) Switch cover unit	HS9Z-DH5C		Used for installing the interlock switch inside.
Slide handle actuator	HS9Z-EH5L		Used for installing the interlock switch inside.
Spring loaded actuator (*1) (*2)	HS9Z-BA5		Actuator retention force is Fzh $=1400 \mathrm{~N}$.
Plug actuator (*1)	HS9Z-A5P		
Padlock hasp (*1)	HS9Z-PH5		
Mounting plate (*3)	HS9Z-SP51		Used when installing the interlock switch on the aluminum frame.
Rear Unlocking Button Kit (*4)	HS9Z-FL53		Panel Thickness (*5) (X): $23<\mathrm{X} \leq 33$
	HS9Z-FL54		Panel Thickness (*5) (X): $33<x \leq 43$
	HS9Z-FL55		Panel Thickness (*5) (X): $43<\mathrm{X} \leq 53$

*1) See E-064 to E-090 for details on accessories.
*2) HS9Z-BA5 can only be used for HS5L interlock switches. Also, HS9Z-BA5 can be used only on slide doors. Do not use on hinge doors.
*3) When mounting HS5L- $\square \square \square \square \mathrm{L}$ (rear unlocking button model) using a mounting plate, provide mounting holes on the mounting plate as shown below and user Rear Unlocking Button Kit (HS9Z-FL5 \square).
*4) HS5L interlock switch rear unlocking button kit (When mounting HS5L- \square L directly).
*5) Thickness of the frame or panel where the HS5L is mounted.

- Follow the instructions on catalog or instruction sheet for proper use of accessories.

HS5L Interlock Switches with Solenoid

APEM
Pilot Lights
Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products

Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit
Protectors

Power Supplies
LED Illumination

Controllers
Operator

Operator
Interfaces
Sensors
AUTO-ID Interlock Switches Non-contact Interlock Switches Safety Laser Scanners
Safety Light Curtains

Safety Modules

Interlock Switch Dimensions and Mounting Hole Layouts

HS5L-वप4M-G

When using Horizontal Mounting/Straight Actuator (HS9Z-A51)

Mounting Hole Layout

Accessories
(supplied)

Slot Plug

Manual Unlocking Key

HS5L- $\square \square 4 S M-G$ (two-conduit model)
When using Horizontal Mounting/Straight Actuator (HS9Z-A51)
Left cable orientation (factory setting) Right cable orientation

*1) Actuator mounting reference position

Interlock Switch Dimensions and Mounting Hole Layouts
HS5L- $\square \square 4 L M-G$ (with rear unlocking button)
When using Horizontal Mounting/Straight Actuator (HS9Z-A51)

HS5L- $\square \square 4$ LSM-G (two-conduit model/rear unlocking button)
When using Horizontal Mounting/Straight Actuator (HS9Z-A51)

*1) Actuator mounting reference position

HS5L Interlock Switches with Solenoid

Interlock Switch Dimensions and Mounting Hole Layouts

Dimensions

Rear Unlocking Button Kit (HS9Z-FL5D)

[^1]- In order to avoid electric shock or fire, turn power off before installation, removal, wiring, maintenance, or inspection of the interlock switch.
- If relays are used in the circuit between the interlock switch and the load, use only safety relays, since welded or sticking contacts of standard relays may invalidate the functions of the interlock switch. Perform a risk assessment and make a safety circuit which satisfies the requirements of the safety category.
- Do not place a PLC in the circuit between the interlock switch and the load. Safety security can be endangered in the event of a malfunction of the PLC.
- Do not disassemble or modify the interlock switch, otherwise a malfunction or an accident may occur.
- Do not install the actuator in a location where a human body may come into contact. Otherwise injury may occur.
- Solenoid lock is locked when energized, and unlocked when deenergized. When energization is interrupted due to wire disconnection or other failures, the interlock switch may be unlocked causing possible danger to the operators. Solenoid lock must not be used in applications where locking is strictly required for safety. Perform a risk assessment and determine whether solenoid lock is appropriate.
- When changing the head orientation, disconnect the cable and turn the manual unlock to the UNLOCK position in advance. If the head orientation is changed when the cable is connected and the manual unlock is in the LOCK position, machines may start to operate, causing danger to the operators.
- HS5L interlock switches are Type 2 low level coded interlocking devices (IS014119). According to ISO14119, the following is required to minimize defeat when installing and constructing systems:

1. Prevent dismantling or de-positioning of the elements of the interlocking device by use of non-detachable fixing (e.g. welding, gluing, one-way screws, riveting). However, use of non-detachable fixing can be an inappropriate solution in cases where a failure of the interlocking device during lifetime of the machinery can be expected and a fast change is necessary. In this case measures mentioned below, should be used to provide the required level of risk reduction.
2. Apply at least one out of the four measures below.
(1) Mounting out of reach.
(2) Physical obstruction or shielding.
(3) Mounting in hidden position.
(4) Integration of defeat monitoring by means of status monitoring/cyclic testing.

Instructions

- Do not use the interlock switch as a door stop. Install a mechanical door stop at the end of the door to protect the interlock switch against excessive force.
- Do not apply excessive shock to the interlock switch when opening or closing the door. A shock to the interlock switch exceeding $1,000 \mathrm{~m} / \mathrm{s}^{2}$ may cause damage to the interlock switch.
- Prevent foreign objects such as dust and liquids from entering the interlock switch while connecting a conduit or wiring.
- Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.
- Do not store the interlock switches in a dusty, humid, or organic-gas atmosphere, or in an area subjected to direct sunlight.
- Use proprietary actuators only. When other actuators are used, the interlock switch may be damaged.
- The locking strength is rated at 1400 N. Do not apply a load higher than the rated value. When a higher load is expected, provide an additional system consisting of another interlock switch without lock (such as the HS5D interlock switch) or a sensor to detect door opening and stop the machine.
- Regardless of door types, do not use the interlock switch as a door lock. Install a separate lock using a latch or other measures.
- While the solenoid is energized, the switch temperature rises approximately $40^{\circ} \mathrm{C}$ above the ambient temperature (to approximately $95^{\circ} \mathrm{C}$ while the ambient temperature is $55^{\circ} \mathrm{C}$). To prevent burns, avoid touching. If cables come into contact with the switch, use heatresistant cables.
- Although the HS92-A51A/A52A actuators alleviate shock when the actuator enters a slot in the interlock switch, make sure that excessive shock is not applied. If the Rubber Bushings become deformed or cracked, replace with new ones.

Mounting Examples

Refer to the following drawing for the installation. Mount the interlock switch to a fixed machine or guard, and actuator on the hinged door. Do not mount both interlock switch and actuator on the hinged doors. This may result in the actuator being inserted at a wrong angle to the interlock switch, resulting in malfunction.

HS5L Interlock Switches with Solenoid

Instructions

Minimum Radius of Hinged Door

When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. Especially for doors with a small turning radius, use vertical/horizontal movable actuators (HS9Z-A53/A55).
Note: Because deviation or dislocation of a hinged door may occur in actual applications, make sure of the correct operation by installing the actual machine first before use.

HS9Z-A52 Actuator

When the center of the hinged door is used as the reference for the interlock switch contact surface:

When the center of the hinged door is used as the reference for the actuator mounting surface:

Circuit
Protectors

When using the HS9Z-A55S Angle Adjustable

 (vertical/horizontal) Actuator (w/Plate)- When the center of the hinged door is used as the reference for the interlock switch contact surface: 50 mm
- When the center of the hinged door is used as the reference for the actuator mounting surface: 70 mm
- The HS9Z-A55S angle adjustable actuator is made of glass-reinforced PA66 (66 nylon) and the angle adjustment screw and plate are made of stainless steel. When using the screw locking agent, make sure that it is compatible with the base material.
When the center of the hinged door is used as the reference for the interlock switch contact surface:

When the center of the hinged door is used as the reference for the actuator mounting surface:

When using the HS9Z-A55 Angle Adjustable

(vertical/horizontal) Actuator

- When the center of the hinged door is used as the reference for the interlock switch contact surface: 50 mm
- When the center of the hinged door is used as the reference for the actuator mounting surface: 70 mm
- The HS9Z-A55 angle adjustable actuator is made of glass-reinforced PA66 (66 nylon) and the angle adjustment screw is stainless steel. When using the screw locking agent, make sure that it is compatible with the base material.
When the center of the hinged door is used as the reference for the interlock switch contact surface:

When the center of the hinged door is used as the reference for the actuator mounting surface:

When using the HS9Z-A53 Angle Adjustable (vertical) Actuator

- When the center of the hinged door is used as the reference for the interlock switch contact surface: 50 mm
- When the center of the hinged door is used as the reference for the actuator mounting surface: 80 mm
- Angle adjustment screw recommended tightening torque: $0.8 \mathrm{~N} \cdot \mathrm{~m}$.

Instructions

Installing the Head

Do not use plastic and metallic heads of HS5D interlock switches on the HS5L. Be sure to use HS5L metallic heads.

* The metal heads of the HS5D and HS5L look similar. When using these interlock switches adjacently, ensure that the heads are not interchanged.

* The metal head can be distinguished easily by the color of the plastic.

Rotating the Head

The head can be rotated by removing the four screws from the corners of the head and reinstalling the head in the desired orientation. However, when changing the mounting direction of the head after wiring, turn the manual lock release to the "UNLOCK" position using the enclosed manual lock release key first. When reinstalling the head, make sure that no foreign object enters the interlock switch. Tighten the screws tightly, without leaving a space between the head and body, otherwise the interlock switch may malfunction.
(Recommended tightening torque: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$)

Head Removal Detection Function

- Solenoid locks interlock switches are not equipped with the head removal detection function.
- The head removal detection function is available only on spring lock interlock switches with circuits VB, VD, and DD having two or more lock monitor circuits. Removing the head will result in disparity (41-42: 0FF, 51-52: ON). Note that this function cannot be detected with other models.
- Only the lock monitor circuit 41-42 turns off (open) when the head is removed, such as when the head is rotated. The other monitor circuit 51-52 turns 0N (close). Be sure to connect the lock monitor circuit (41-42) to a safety circuit.

Spring Loaded Actuator

- When using the actuator, be careful of protruding ends.
- Regardless of door types, do not use the HS9Z-BA5 actuator as a door lock or a door stop.
- When an operator enters the hazardous zone, take safety measures such as using a HS9Z-PH5 padlock hasp so that the operator is not trapped inside and the machine cannot start by mistake.
- Use the actuator only on sliding doors. Do not use on hinged doors.
- As shown in the figure on the right, do not insert the sliding actuator from below. The actuator may fall out due to shocks.

- The HS9Z-BA5 actuator can only be used for HS5L interlock switches. Do not use the HS9Z-BA5 actuator for other products.
- Do not modify or disassemble the actuator.

Installation (when installation reference is 0.8 mm)

- The actuator protrudes out when the actuator is not inserted (door is open) as shown in 1 . in the drawing.
- The mounting reference position can be set to 0.8 mm when the actuator is fully inserted and the actuator protrudes up to the 0.8 mm line.

APEM
Switches \& Pilot Lights

Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof
Terminal Blocks
Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator
Interfaces
Sensors
AUTO-ID

Interlock
Switches
Non-contact
Interlock Switches
Safety Laser
Scanners
Safety Light
Curtains
Safety Modules

Padlock Hasp

HS5L Interlock Switches with Solenoid

Instructions

Adjustment

Adjustment Procedure

1. Make a hole at A or C.
2. Fasten temporarily with screws, and check the actuator position.
3. Make a hole at B and fix the actuator using a screw or a rivet.

- 3.3 mm line

The mounting reference position is where the door is fully closed, and there is a 0.8 mm space between the safety switch and HS9Z-BA5, but can be adjusted up to the 3.3 mm line.
The actuator is most securely locked when the mounting reference position is at the 0.8 mm line. However, adjust between 0.8 to 3.3 mm if the interlock switch is mounted on a door where the space might become smaller.

- Lock limit line

When a door opens by bouncing, if the lock limit line is outside of the edge of the interlock switch, the force of the bounce may be too large so that the door may not lock.

Safety Precautions

- The maximum gap of the door that can be locked is 16 mm . (When mounting reference is a the 0.8 mm line)
- If the safety distance and minimum gap does not satisfy the requirements of ISO13857, make the gap smaller by overlapping the doors or by providing sufficient distance from the hazardous source. If the required safety distance cannot be obtained, use the actuator other than spring loaded actuator.
- The operating characteristics may change when the actuator is used with the HS5L. Check the operating characteristics before use.

Characteristic Diagram (Reference)

* Bounce can be tolerated to approximately 16 mm .
[Reference] When using HS9Z-A51A with HS5L interlock switch:
Approx. 4.6 mm Locking position

Manual Unlocking

Spring lock

The spring lock interlock switch allows manual unlocking of the actuator to precheck proper door movement before wiring or turning power on, as well as for emergency use such as a power failure.

Solenoid lock

The solenoid interlock switch does not unlock even when the solenoid is de-energized. However, the interlock switch can be unlocked manually in emergency cases.

Normal Position

Manual Unlocking Position

When locking or unlocking the interlock switch manually, turn the key fully using the manual unlock key supplied with the interlock switch as shown above. Using the interlock switch with the key not fully turned (less than 90°) may cause damage to the interlock switch or operation failures (when manually unlocked, the interlock switch will keep the main circuit disconnected and the door unlocked).
Do not apply excessive force to the manual unlock, otherwise the manual unlock will become damaged. Do not leave the manual unlock key attached to the interlock switch during operation. This is dangerous because the interlock switch can always be unlocked while the machine is in operation.

Safety Precautions

Before manually unlocking the interlock switch, make sure that the machine has come to a complete stop. Manual unlocking during operation may unlock the interlock switch before the machine stops, and the function of interlock switch with solenoid is lost.

Installing the Rear Unlocking Button

(HS5L-DL)
After installing the interlock switch on the panel, place the rear unlocking button (supplied with the switch) on the push rod on the back of the interlock switch, and fasten the button using M3 sems
screw (supplied with the switch).

When installing on a mounting frame
thicker than 6 mm , use the rear unlocking button kit HS9Z-FL5 \square (sold separately).

Safety Precautions

After installing the rear unlocking button, apply Loctite to the screw so that the screw does not become loose. The rod is made of stainless steel, the button is made of glass-reinforced PA66 (66 nylon) and the screw is made of iron. Take the compatibility of the plastic material and Loctite into consideration.

Installing the Rear Unlocking Button Kit

1. Install the connecting rod onto the push rod on the HS5L- \square L rear unlocking button interlock switch.
2. A pin is attached to the connecting rod. Insert the pin into the hole in the push rod, using pliers.

3. Pull the connecting rod from the hole in the mounting frame, and turn the button operating pin to the horizontal position.

Safety Precautions

- Ensure that the connecting rod is pulled out completely and it is horizontal to the interlock switch, otherwise the unlocking button cannot be installed. Note: Frame must be supplied by the user. When using an HS9Z-SP51 mounting plate (sold separately) to install the HS5L on a frame, provide a hole for the connecting rod on the frame and mounting plate.
For the mounting hole layout of interlock switches, see dimensions on E-047.

4. Install the unlocking button on the connecting rod by fitting the pin to the grooves on the back of the button, and fasten the base plate on the mounting frame using the screws.

5. After fastening the screws, check if locking and unlocking operations can be performed.

Safety Precautions

- Install the rear unlocking button kit in the correct direction as shown below. Do not install the kit in incorrect directions, otherwise malfunction may occur.
- Do not apply strong force exceeding $100 \mathrm{~m} / \mathrm{s}^{2}$ to the interlock switch while the rear unlocking button is not pressed, otherwise malfunction may occur.

Unlocking the Manual Lock Using the Rear Unlocking Button

Use the rear unlocking button when a worker is locked inside a safety fence (hazard area). (Compliant with escape release described in IS014119 [2003] and GS-ET-19)

- When the rear unlocking button is pressed, the interlock switch is unlocked and the door can be opened.
- To lock the interlock switch, pull back the button.
- When the button remains pressed, the interlock switch cannot be locked even if the door is closed, and the main circuit remains open.

Safety Precautions

- Install the rear unlocking button in the place where only the operator inside the hazardous area can use it. Do not install the button in a place where an operator outside the hazardous area can use it, otherwise the interlock switch can be unlocked during usual machine operation, causing danger.
- Operate the rear unlocking button by hand only. Do not operate using a tool or with excessive force. Do not apply force to the button from the direction other than the proper direction, otherwise the button will be damaged.

Recommended Tightening Torque

- HS5L interlock switch: 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 4 \text { screws } \times 3)^{\star}$
- Lid mounting screw: 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 3 \mathrm{screw} \times 2)$
- Rear unlocking button: 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$ (M3 screw)
- Rear unlocking button kit: 4.8 to $5.2 \mathrm{~N} \cdot \mathrm{~m}$ (M5 screw)
- Actuators

HS9Z-A51: $\quad 1.8$ to $2.2 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 4 \text { screws } \times 2)^{\star}$
HS9Z-A52: $\quad 0.8$ to $1.2 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 4$ flat head screws $\times 2)$
HS9Z-A51A/A52A: 1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (M4 screws $\times 2)^{*}$
HS9Z-A53: $\quad 4.5$ to $5.5 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 6 \text { screws } \times 2)^{\star}$
HS9Z-A55: $\quad 1.0$ to $1.5 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 4 \text { screws } \times 2)^{*}$
HS9Z-A55S: $\quad 1.0$ to $1.5 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 4 \text { screws } \times 2)^{\star}$
HS9Z-BA5: $\quad 4.5$ to $5.5 \mathrm{~N} \cdot \mathrm{~m}(\mathrm{M} 5 \text { screws } \times 2 / 4)^{\star}$

* If the mounting screw recommended tightening torque values above is not satisfied, check loosening after installation thoroughly.
- Mounting screws need to be prepared by the customer.
- To avoid unauthorized or unintended removal of the interlock switch and the actuator, it is recommended that the interlock switch and actuator are installed in a secure manner, for example using special screws or welding the screws (IS014119).
- When installing the HS9Z-A51A and HS9Z-A52A actuators, use the washer (supplied with the actuator) on the hinged door, and mount tightly using two M4 screws.
Mounting centers: 12 mm (factory setting), adjustable to 20 mm

Switches \& Pilot Lights

Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof

Terminal Blocks

Relays \& Sockets
Circuit
Protectors
Power Supplies
LED Illumination

Controllers
Operator
Interfaces
Sensors

AUTO-ID

Instructions

Applicable Cable Glands

Use a cable gland with IP67 protection degree.
Applicable Cable Gland Dimensions

When Using Flexible Conduits (example)

Conduit Port Size	Plastic Cable Gland	Metal Cable Gland
M20	-	RLC-103EC20 (Nihon Flex)
When Using Multi-core Cables (example)		
Conduit Port Size	Plastic Cable G	Metal Cable Gland
M20	ST-M20X1.5 (Manufacturer: (Distributor: K-M	ALS-DCEC20 (Nihon Flex)

Different cable glands are used depending on the cable sheath outside diameter. When purchasing a cable gland, confirm that the cable gland is applicable to the cable sheath outside diameter.

* When using ST-M20X1.5, use with gasket below:

GPM20 (Manufacturer: LAPP Distributor: K.MECS)

Lead-in Wire Length and Wiring Examples

Part No.	Cable Orientation	Cable Length (L1)
$\begin{aligned} & \hline \text { HS5L-ロप4M-G } \\ & \text { HS5L-■प4LM-G } \end{aligned}$	Straight	30 to 35 mm
$\begin{aligned} & \hline \text { HS5L-पロ4SM-G } \\ & \text { HS5L-ם } \square 4 L S M-G \end{aligned}$	Side (right or left)	50 to 55 mm

Notes:

When connecting the NC contact (11-12, 21-22) of door monitor circuit and NC contacts (41-42,51-52) of the lock monitor circuit in a series as an input to a safety circuit, connect 12-41 or 22-51.

Cautions for Wiring

Use the following applicable wiring. Stranded wire or solid wire
(1 wire): 0.3 to $1.5 \mathrm{~mm}^{2}$ (AWG22 to AWG16)
Make sure to strip the wire insulation 8 to 9 mm from the end. If the strip length is too short, the wire may fall out. If the strip length is too long, it may short circuit with other wires.
Twist the wires and make sure that there are no wire whiskers.
When using stranded wires without ferrules, make sure that the core wires have not been loosened.

- For wiring, use screwdrivers as shown in the right. (The shape of the tip of the screwdriver is in accordance with DIN5264)
- The inserting port of the wire and screwdriver, and direction of the tip is as shown in the diagram below.

- When using ferrules for stranded wires, use the ferrule listed in the following table.

Compatible Wire		Model No .	Manufacturer
$0.34 \mathrm{~mm}^{2}$	AWG22	AIO.34-6TQ	Phoenix Contact
$0.5 \mathrm{~mm}^{2}$	AWG20	Al0.5-6WH	
$0.75 \mathrm{~mm}^{2}$	AWG18	AIO.75-6GY	
$1 \mathrm{~mm}^{2}$	AWG18	Al1-6RD	
$0.5 \mathrm{~mm}^{2}$	AWG20	TE0.5-8	NICHIFU Co., Ltd.
$0.75 \mathrm{~mm}^{2}$	AWG18	TE0.75-8	
$1 \mathrm{~mm}^{2}$	AWG18	TE1.0-8	

Wire connection method

1. Insert the screwdriver into the square-shaped port from a slightly slanted angle as shown, until the screw-driver tip touches the bottom of the spring. Make sure that the direction of the blade edge is correct.
2. Push in the screwdriver until it touches the bottom of the port. The wire port is opened, and the screwdriver is held in place. The screwdriver will not come off even if you release your hand.
3. While the screwdriver is retained in the port, insert the wire or ferrule into the round-shaped wire port.

Pull out the screwdriver
The connection is now complete.

Safety Precautions

When using wires with insulation diameter of $ø 2.0 \mathrm{~mm}$ or less, do not insert the wire too deeply where the insulation inserts into the spring clamp opening. Make sure that the wire insulation is stripped 8 to 9 mm and the wire is inserted to the bottom.

If there is a need to insert the screwdriver while holding the interlock switch with hands, be careful not to injure your fingers with the tip of the screwdriver. Connect one wire to one wiring port.
 too deep

(According to IEC 60204 (JIS 9960-1) 13.1.1 General Requirement)

Instructions

Changing the cable orientation (two-conduit model)

Cable orientation can be changed on two-conduit models (HS5L-■ $\square 4 S M-G / H S 5 L-\square \square 4 L S M-G)$. Straight, left, and right orientation is available.
When shipped, the terminal cover is installed on the HS5L for straight or left cable orientation.
See below for mounting the cable rightward.
(1) Remove the cover mounting screws ($\mathrm{M} 3 \times 2$) and remove the HS5L from the cover.
(2) Rotate the cover 180°.
(3) Re-intall the cover on the HS5L and fasten using the cover mounting screws.

Note: Before tightening the cover mounting screws, slide the spacer in the direction opposite the screw positions to prevent it from coming into contact with the screwdriver

Opening conduit port

- Before use, knock out the conduit port where the connector is to be connected, using a tool such as screwdriver as shown in the figures.
- Before opening the conduit port, remove the terminal cover from the HS5L, and remove the locking ring for the cable gland installed in the terminal cover.
- Be sure to remove any cracks or burrs on the conduit port, as it will impair waterproof performance.

Connector Wiring

Perform wiring according to following procedures (1) to (2).
(1) Insert the cable into the connector. Leave A and B untightened.
(2) Open the cover and insert the cable into the cover.

(4) Tighten in the order of $\mathrm{A} \rightarrow$ Cover $\rightarrow \mathrm{B}$.

* To remove the wiring, turn the power off and then unwire in the order of $B \rightarrow$ cover (\rightarrow waterproof gasket $\rightarrow \mathrm{A}$).
Note: When removing A, because the waterproofing gasket is tightly attached to the cable, pull out the gasket carefully with tweezers so that the gasket is not damaged before loosening A. Otherwise, the cable will rotate together with A when loosened, and might break due to excessive twisting. Also, when reassembling, place the gasket in the original position first.

Safety Precautions

- When opening the cover, be careful not to lose the cover mounting screw.
- When tightening connector B, insert the cable into the connector, and set it to a position where the gasket of the connector holds the cable sheath, otherwise, its waterproof performance might be impaired.
- Tighten the connector in order of $\mathrm{A} \rightarrow$ B. If connector B is tightened first, the wiring connected to the spring clamp

tightly
Make sure that the entire bore surface of the gasket is in contact with the sheath. terminal may become twisted when tightening A, causing disconnection or malfunction.
- Tighten the connectors with tightening torque according to the torque value recommended by the connector manufacturer. Otherwise, waterproof performance might be impaired.
- Do not exert excessive load, pressure, or tensile force on the cable, otherwise disconnection or malfunction might occur.

Switches \& Pilot Lights

Control Boxes
Emergency
Stop Switches
Enabling
Switches
Safety Products
Explosion Proof

Terminal Blocks

Relays \& Sockets
Circuit
Protectors
Power Supplies

Thank you for using IDEC Products.
By purchasing products listed in our catalogs, datasheets, and the like (hereinafter referred to as "Catalogs") you agree to be bound by these terms and conditions. Please read and agree to the terms and conditions before placing your order.

1. Notes on contents of Catalogs

(1) Rated values, performance values, and specification values of IDEC products listed in this Catalog are values acquired under respective conditions in independent testing, and do not guarantee values gained in combined conditions.
Also, durability varies depending on the usage environment and usage conditions.
(2) Reference data and reference values listed in Catalogs are for reference purposes only, and do not guarantee that the product will always operate appropriately in that range.
(3) The specifications / appearance and accessories of IDEC products listed in Catalogs are subject to change or termination of sales without notice, for improvement or other reasons.
(4) The content of Catalogs is subject to change without notice.

2. Note on applications

(1) If using IDEC products in combination with other products, confirm the applicable laws / regulations and standards.
Also, confirm that IDEC products are compatible with your systems, machines, devices, and the like by using under the actual conditions. IDEC shall bear no liability whatsoever regarding the compatibility with IDEC products.
(2) The usage examples and application examples listed in Catalogs are for reference purposes only. Therefore, when introducing a product, confirm the performance and safety of the instruments, devices, and the like before use. Furthermore, regarding these examples, IDEC does not grant license to use IDEC products to you, and IDEC offers no warranties regarding the ownership of intellectual property rights or non-infringement upon the intellectual property rights of third parties.
(3) When using IDEC products, be cautious when implementing the following. i. Use of IDEC products with sufficient allowance for rating and performance
ii. Safety design, including redundant design and malfunction prevention design that prevents other danger and damage even in the event that an IDEC product fails
iii. Wiring and installation that ensures the IDEC product used in your system, machine, device, or the like can perform and function according to its specifications
(4) Continuing to use an IDEC product even after the performance has deteriorated can result in abnormal heat, smoke, fires, and the like due to insulation deterioration or the like. Perform periodic maintenance for IDEC products and the systems, machines, devices, and the like in which they are used.
(5) IDEC products are developed and manufactured as general-purpose products for general industrial products. They are not intended for use in the following applications, and in the event that you use an IDEC product for these applications, unless otherwise agreed upon between you and IDEC, IDEC shall provide no guarantees whatsoever regarding IDEC products.
i. Use in applications that require a high degree of safety, including nuclear power control equipment, transportation equipment (railroads / airplanes / ships / vehicles / vehicle instruments, etc.), equipment for use in outer space, elevating equipment, medical instruments, safety devices, or any other equipment, instruments, or the like that could endanger life or human health
ii. Use in applications that require a high degree of reliability, such as provision systems for gas / waterworks / electricity, etc., systems that operate continuously for 24 hours, and settlement systems
iii. Use in applications where the product may be handled or used deviating from the specifications or conditions / environment listed in the Catalogs, such as equipment used outdoors or applications in environments subject to chemical pollution or electromagnetic interference If you would like to use IDEC products in the above applications, be sure to consult with an IDEC sales representative.

3. Inspections

We ask that you implement inspections for IDEC products you purchase without delay, as well as thoroughly keep in mind management/maintenance regarding handling of the product before and during the inspection.

4. Warranty

(1) Warranty period

The warranty period for IDEC products shall be one (1) year after purchase or delivery to the specified location. However, this shall not apply in cases where there is a different specification in the Catalogs or there is another agreement in place between you and IDEC.
(2) Warranty scope

Should a failure occur in an IDEC product during the above warranty period for reasons attributable to IDEC, then IDEC shall replace or repair that product, free of charge, at the purchase location / delivery location of the product, or an IDEC service base. However, failures caused by the following reasons shall be deemed outside the scope of this warranty.
i. The product was handled or used deviating from the conditions / environment listed in the Catalogs
ii. The failure was caused by reasons other than an IDEC product
iii. Modification or repair was performed by a party other than IDEC
iv. The failure was caused by a software program of a party other than IDEC
v. The product was used outside of its original purpose
vi. Replacement of maintenance parts, installation of accessories, or the like was not performed properly in accordance with the user's manual and Catalogs
vii. The failure could not have been predicted with the scientific and technical standards at the time when the product was shipped from IDEC
viii. The failure was due to other causes not attributable to IDEC (including cases of force majeure such as natural disasters and other disasters)
Furthermore, the warranty described here refers to a warranty on the IDEC product as a unit, and damages induced by the failure of an IDEC product are excluded from this warranty.

5. Limitation of liability

The warranty listed in this Agreement is the full and complete warranty for IDEC products, and IDEC shall bear no liability whatsoever regarding special damages, indirect damages, incidental damages, or passive damages that occurred due to an IDEC product.

6. Service scope

The prices of IDEC products do not include the cost of services, such as dispatching technicians. Therefore, separate fees are required in the following cases.
(1) Instructions for installation / adjustment and accompaniment at test operation (including creating application software and testing operation, etc.)
(2) Maintenance inspections, adjustments, and repairs
(3) Technical instructions and technical training
(4) Product tests or inspections specified by you

The above content assumes transactions and usage within your region. Please consult with an IDEC sales representative regarding transactions and usage outside of your region. Also, IDEC provides no guarantees whatsoever regarding IDEC products sold outside your region.

USA EMEA	IDEC Corporation APEM SAS	Singapore	IDEC Izumi Asia Pte. Ltd.	China	IDEC (Shanghai) Corporation	Japan	IDEC Corporation
		Thailand	IDEC Asia (Thailand) Co., Ltd.		IDEC Izumi (H.K.) Co., Ltd.		
		India	IDEC Controls India Private Ltd.	Taiwan	IDEC Taiwan Corporation		

[^0]: *1) Not applicable for all models. Visit IDEC's website for details.
 *2) See E-044 regarding actuator retention force.

[^1]: Note: With the mounting hole dimension, the rear unlocking button rod does not touch the mounting hole even when the interlock switch moves sideways.

